457 research outputs found

    Spectrum of surface-mode contributions to the excitation probability for electron beam interacting with sharp-edged dielectric wedges

    Full text link
    The interaction of a nonrelativistic charged particle beam, travelling parallel to the surface of a sharp-edged dielectric wedge is analyzed. The general expressions for excitation probability are obtained for a beam moving along the direction of a symmetry axis, either outside or inside the dielectric wedge. The dielectric function of the medium is assumed to be isotropic, and numerical results are given for the materials of experimental interest.Comment: LaTeX 2.09, 15 pages, 10 figure

    Optimal refrigerator

    Full text link
    We study a refrigerator model which consists of two nn-level systems interacting via a pulsed external field. Each system couples to its own thermal bath at temperatures ThT_h and TcT_c, respectively (θTc/Th<1\theta\equiv T_c/T_h<1). The refrigerator functions in two steps: thermally isolated interaction between the systems driven by the external field and isothermal relaxation back to equilibrium. There is a complementarity between the power of heat transfer from the cold bath and the efficiency: the latter nullifies when the former is maximized and {\it vice versa}. A reasonable compromise is achieved by optimizing the product of the heat-power and efficiency over the Hamiltonian of the two system. The efficiency is then found to be bounded from below by ζCA=11θ1\zeta_{\rm CA}=\frac{1}{\sqrt{1-\theta}}-1 (an analogue of the Curzon-Ahlborn efficiency), besides being bound from above by the Carnot efficiency ζC=11θ1\zeta_{\rm C} = \frac{1}{1-\theta}-1. The lower bound is reached in the equilibrium limit θ1\theta\to 1. The Carnot bound is reached (for a finite power and a finite amount of heat transferred per cycle) for lnn1\ln n\gg 1. If the above maximization is constrained by assuming homogeneous energy spectra for both systems, the efficiency is bounded from above by ζCA\zeta_{\rm CA} and converges to it for n1n\gg 1.Comment: 12 pages, 3 figure

    Coherence as ultrashort pulse train generator

    Full text link
    Intense, well-controlled regular light pulse trains start to play a crucial role in many fields of physics. We theoretically demonstrate a very simple and robust technique for generating such periodic ultrashort pulses from a continuous probe wave which propagates in a dispersive thermal gas media

    Magnetic and quantum entanglement properties of the distorted diamond chain model for azurite

    Full text link
    We present the results of magnetic properties and entanglement of the distorted diamond chain model for azurite using pure quantum exchange interactions. The magnetic properties and concurrence as a measure of pairwise thermal entanglement have been studied by means of variational mean-field like treatment based on Gibbs-Bogoliubov inequality. Such a system can be considered as an approximation of the natural material azurite, Cu3(CO3)2(OH)2. For values of exchange parameters, which are taken from experimental results, we study the thermodynamic properties, such as azurite specific heat and magnetic susceptibility. We also have studied the thermal entanglement properties and magnetization plateau of the distorted diamond chain model for azurite

    Energy measurements remain thermometrically optimal beyond weak coupling

    Get PDF
    We develop a general perturbative theory of finite-coupling quantum thermometry up to second order in probe-sample interaction. By assumption, the probe and sample are in thermal equilibrium, so the probe is described by the mean-force Gibbs state. We prove that the ultimate thermometric precision can be achieved – to second order in the coupling – solely by means of local energy measurements on the probe. Hence, seeking to extract temperature information from coherences or devising adaptive schemes confers no practical advantage in this regime. Additionally, we provide a closed-form expression for the quantum Fisher information, which captures the probe's sensitivity to temperature variations. Finally, we benchmark and illustrate the ease of use of our formulas with two simple examples. Our formalism makes no assumptions about separation of dynamical timescales or the nature of either the probe or the sample. Therefore, by providing analytical insight into both the thermal sensitivity and the optimal measurement for achieving it, our results pave the way for quantum thermometry in setups where finite-coupling effects cannot be ignored

    Enhancement of low-temperature thermometry by strong coupling

    Get PDF
    We consider the problem of estimating the temperature T of a very cold equilibrium sample. The temperature estimates are drawn from measurements performed on a quantum Brownian probe strongly coupled to it. We model this scenario by resorting to the canonical Caldeira-Leggett Hamiltonian and find analytically the exact stationary state of the probe for arbitrary coupling strength. In general, the probe does not reach thermal equilibrium with the sample, due to their nonperturbative interaction. We argue that this is advantageous for low-temperature thermometry, as we show in our model that (i) the thermometric precision at low T can be significantly enhanced by strengthening the probe-sampling coupling, (ii) the variance of a suitable quadrature of our Brownian thermometer can yield temperature estimates with nearly minimal statistical uncertainty, and (iii) the spectral density of the probe-sample coupling may be engineered to further improve thermometric performance. These observations may find applications in practical nanoscale thermometry at low temperatures—a regime which is particularly relevant to quantum technologies
    corecore